Lipocalin-type prostaglandin D synthase protects against oxidative stress-induced neuronal cell death.
نویسندگان
چکیده
L-PGDS [lipocalin-type PGD (prostaglandin D) synthase] is a dual-functional protein, acting as a PGD2-producing enzyme and a lipid transporter. L-PGDS is a member of the lipocalin superfamily and can bind a wide variety of lipophilic molecules. In the present study we demonstrate the protective effect of L-PGDS on H2O2-induced apoptosis in neuroblastoma cell line SH-SY5Y. L-PGDS expression was increased in H2O2-treated neuronal cells, and the L-PGDS level was highly associated with H2O2-induced apoptosis, indicating that L-PGDS protected the neuronal cells against H2O2-mediated cell death. A cell viability assay revealed that L-PGDS protected against H2O2-induced cell death in a concentration-dependent manner. Furthermore, the titration of free thiols in H2O2-treated L-PGDS revealed that H2O2 reacted with the thiol of Cys65 of L-PGDS. The MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight)-MS spectrum of H2O2-treated L-PGDS showed a 32 Da increase in the mass relative to that of the untreated protein, showing that the thiol was oxidized to sulfinic acid. The binding affinities of oxidized L-PGDS for lipophilic molecules were comparable with those of untreated L-PGDS. Taken together, these results demonstrate that L-PGDS protected against neuronal cell death by scavenging reactive oxygen species without losing its ligand-binding function. The novel function of L-PGDS could be useful for the suppression of oxidative stress-mediated neurodegenerative diseases.
منابع مشابه
The Hydroalcoholic Extract of Saffron Protects PC12 Cells against Aluminum-Induced Cell Death and Oxidative Stress in Vitro
Background: Aluminum (Al) exposure is among the environmental risk factors that may involve in the pathogenesis of neurodegenerative diseases. Oxidative stress has a critical role in the Al-induced toxicity. Saffron is a plant with potent radical scavenging and anti-oxidative properties. This investigation was designed to evaluate the possible protective effects of saffron extract (SE) on alumi...
متن کاملAdrenomedullin protects rat dorsal root ganglion neurons against doxorubicin-induced toxicity by ameliorating oxidative stress
Objective(s): Despite effective anticancer effects, the use of doxorubicin (DOX) is hindered due to its cardio and neurotoxicity. The neuroprotective effect of adrenomedullin (AM) was shown in several studies. The present study aimed to evaluate the possible protective effects of AM against DOX-induced toxicity in dorsal root ganglia (DRGs) neurons. M...
متن کاملDeletion of p66Shc longevity gene protects against experimental diabetic glomerulopathy by preventing diabetes-induced oxidative stress.
p66(Shc) regulates both steady-state and environmental stress-dependent reactive oxygen species (ROS) generation. Its deletion was shown to confer resistance to oxidative stress and protect mice from aging-associated vascular disease. This study was aimed at verifying the hypothesis that p66(Shc) deletion also protects from diabetic glomerulopathy by reducing oxidative stress. Streptozotocin-in...
متن کاملNeuroprotective effect of topiramate against 6-hydroxydopamine-induced cell death in Parkinson's disease cell mode
Introduction: Parkinson's disease (PD) is a common neurodegenerative disorder characterized by progressive neuronal dysfunction. Growing evidence has shown that oxidative stress plays a crucial role in the pathogenesis of Parkinson's disease. Correspondingly, the current study evaluated the protective effect of topiramate in 6-hydroxydopamine induced oxidative stress and apoptosis in PC12 cells...
متن کاملGlucocorticoid protects rodent hearts from ischemia/reperfusion injury by activating lipocalin-type prostaglandin D synthase-derived PGD2 biosynthesis.
Lipocalin-type prostaglandin D synthase (L-PGDS), which was originally identified as an enzyme responsible for PGD2 biosynthesis in the brain, is highly expressed in the myocardium, including in cardiomyocytes. However, the factors that control expression of the gene encoding L-PGDS and the pathophysiologic role of L-PGDS in cardiomyocytes are poorly understood. In the present study, we demonst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 443 1 شماره
صفحات -
تاریخ انتشار 2012